TRIDONIC

Kompakt Dimming

Driver LCA 17W 250-700mA one4all C PRE

Baureihe PREMIUM

Produktbeschreibung

- Dimmbarer Konstantstrom-LED-Driver für den Leuchteneinbau
- Ausgangsstrom einstellbar zwischen 250 700 mA mit ready2mains™ Programmer oder I-select 2 Plugs
- Max. Ausgangsleistung 17 W
- Bis zu 86 % Effizienz
- Leistungsaufnahme im Stand-by < 0,2 W
- Dimmbereich 1 ... 100 %
- Nominale Lebensdauer bis zu 100.000 h
- 5 Jahre Garantie

Gehäuse-Eigenschaften

- Gehäuse: Polycarbonat, weifz
- Schutzart IP20

Schnittstellen

- one4all (DALI DT 6, DSI, switchDIM, corridorFUNCTION)
- ready2mains™ (Konfigurieren und Dimmen über Netz)
- Klemmen: 45° Steckklemmen

Funktionen

- Einstellbarer Ausgangsstrom (DALI, ready2mains™, I-select 2)
- Constant Light Output Funktion (CLO)
- Power-up Fading bei AC
- Konfigurieren über ready2mains™
- Servicemonitor protokolliert bestimmte Ereignisse
- Schutzfunktionen (Übertemperatur, Kurzschluss, Überlast, Leerlauf, Eingangsspannungsbereich, reduzierte Stoßstromverstärkung)
- Geeignet für Sicherheitsbeleuchtungsanlagen gemäß EN50172

Vorteile

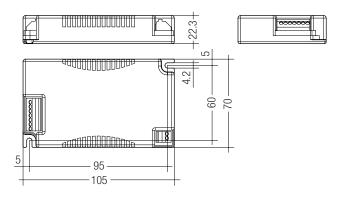
- Anwendungsorientiertes Betriebsfenster für max. Kompatibilität
- Hohe Energieeinsparungen durch geringe Standby-Verluste und hohe Effizienz
- Flexible Konfiguration über DALI, ready2mains™ und I-select 2
- Lebensdauer bis zu 100.000 h und 5 Jahre Garantie

Typische Anwendung

• Für Spotlight und Downlight bei Handels- und Gastronomie-Anwendungen

Normen, Seite 4

Änderungen vorbehalten. Angaben ohne Gewähr.


$\begin{array}{c} \text{IP20 SELV } \\ \text{\tiny POHS} \end{array} \\ \begin{array}{c} \text{\tiny POHS} \end{array} \\ \end{array}$

Driver LCA 17W 250-700mA one4all C PRE

Baureihe PREMIUM

Technische Daten

Technische Daten	
Netzspannungsbereich	220 – 240 V
Eingangsspannungsbereich AC	198 – 264 V
Eingangsspannungsbereich DC	176 – 280 V
Netzfrequenz	0 / 50 / 60 Hz
Überspannungsfestigkeit	320 V AC, 48 h
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast) ^{① ②}	65 – 95 mA
Typ. Nennstrom (220 V, 0 Hz, Volllast, 15 % Dimmleve	el) [©] 15 – 25 mA
Ableitstrom (bei 230 V, 50 Hz, Volllast) [®]	< 700 μΑ
Max. Eingangsleistung	22,5 W
Typ. Wirkungsgrad (bei 230 V / 50 Hz / Volllast)®	86 %
λ (bei 230 V, 50 Hz, Volllast) [®]	0,98
Typ. Leistungsaufnahme im Stand-by®	< 0,2 W
Typ. Eingangsstrom im Leerlauf	12 mA
Typ. Eingangsleistung im Leerlauf	0,4 W
Einschaltstrom (Spitze / Dauer)	16,6 A / 185 µs
THD (bei 230 V, 50 Hz, Volllast) [®]	< 10 %
Time to light (bei 230 V, 50 Hz, Volllast) ^①	< 0,7 s
Time to light (DC-Betrieb)	< 0,4 s
Umschaltzeit (AC/DC)	< 0,4 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	< 30 ms
Ausgangsstromtoleranz [®]	± 3 %
Max. Ausgangsstromspitze (nicht wiederkehrend)	≤ Ausgangsstrom + 40 %
Ausgangsstrom NF Restwelligkeit (< 120 Hz)	± 5 %
Max. Ausgangsspannung (Leerlaufspannung)	60 V
Dimmbereich	1 – 100 %
Stofspannungsfestigkeit (zwischen L – N)	1 kV
Stoßspannungsfestigkeit (zwischen L/N – PE)	2 kV
Stofsspannung ausgangsseitig (gegen PE)	< 500 V
Abmessungen LxBxH	105 x 70 x 22 mm

Bestelldaten

Тур	Artikel- nummer	Verpackung Karton	Verpackung Palette	Gewicht pro Stk.	
LCA 17W 250-700mA one4all C PRE	28000664	10 Stk.	1.120 Stk.	0,134 kg	

Spezifische technische Daten

Тур	Ausgangs- strom [®]	Min. Vorwärts- spannung	Max. Vorwärts- spannung	Max. Ausgangs- leistung	Typ. Leistungsaufnahme (bei 230 V, 50 Hz, Volllast)	Typ. Stromaufnahme (bei 230 V, 50 Hz, Volllast)		e- Umgebungs- c temperatur ta	I-select 2 Widerstands- wert [®]
	250 mA	15 V	50 V	12,5 W	15,6 W	73 mA	85 °C	-25 +60 °C	Offen
	300 mA	15 V	50 V	15,0 W	18,5 W	83 mA	85 °C	-25 +60 °C	16,67 kΩ
	350 mA	15 V	50 V	17,0 W	20,5 W	92 mA	85 °C	-25 +60 °C	14,29 kΩ
	400 mA	15 V	43 V	17,0 W	20,5 W	92 mA	80 °C	-25 +60 °C	12,50 kΩ
LCA 17W 250-700mA one4all C PRE	450 mA	15 V	38 V	17,0 W	20,5 W	92 mA	80 °C	-25 +60 °C	11,11 kΩ
ECA 1/W 250-700IIIA olie4ali C PRE	500 mA	15 V	34 V	17,0 W	19,8 W	90 mA	75 °C	-25 +60 °C	10,00 kΩ
	550 mA	15 V	31 V	17,0 W	19,8 W	90 mA	75 °C	-25 +60 °C	9,09 kΩ
	600 mA	15 V	28 V	17,0 W	19,8 W	90 mA	75 °C	-25 +60 °C	8,33 kΩ
	650 mA	15 V	26 V	17,0 W	20,3 W	91 mA	75 °C	-25 +60 °C	7,69 kΩ
	700 mA	15 V	24 V	17,0 W	20,3 W	91 mA	75 °C	-25 +60 °C ∣	Kurzschluss (0 Ω)

 $^{^{\}scriptsize \textcircled{1}}$ Gültig bei 100 % Dimmlevel.

 $^{^{\}scriptsize 2\!\!\!2}$ Abhängig vom eingestellten Ausgangsstrom.

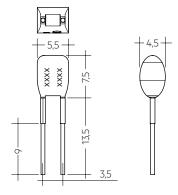
 $[\]ensuremath{^{\textcircled{3}}}$ Abhängig vom DALI-Datenverkehr am Interface.

[®] Die Tabelle enthält eine Auswahl an Betriebspunkten, deckt aber nicht jeden Betriebspunkt ab. Der Ausgangsstrom kann innerhalb des Strombereiches in 1-mA-Schritten eingestellt werden.

 $[\]ensuremath{^{\circledR}}$ Nicht kompatibel mit I-select (Generation 1).

[®] Ausgangsstrom ist Mittelwert.

I-SELECT 2 PLUG PRE / EXC


Produktbeschreibung

- Vorgefertigter Widerstand für Stromeinstellung
- Kompatibel mit LED-Driver mit I-select 2 Interface; nicht kompatibel mit I-select (Generation 1)
- Widerstand ist basisisoliert
- Widerstandsleistung 0,25 W
- Stromtoleranz ± 2 % zusätzlich zur Ausgangsstromtoleranz
- Kompatibel mit LED-Driver der Serien PRE und EXC

Berechnungsbeispiel

- $R [k\Omega] = 5 V / I_out [mA] \times 1000$
- Widerstandstoleranz ≤ 1 %; Leistung ≥ 0,1 W; Basisisolierung erforderlich
- Wird ein Widerstandswert außerhalb des spezifizierten Bereiches verwendet, so wird automatisch der Minimal-Strom (bei zu großem Widerstandswert) bzw. der Maximum-Strom (bei zu kleinem Widerstandwert) eingestellt

Bestelldaten

Tue	Artikel-	Farbe	Kenn-	Strom	Verpackung Gewicht pro		
Тур	nummer	гагре	zeichnung	3110111	Sack	Stk.	
I-SELECT 2 PLUG 250MA BL	28001106	Blau	0250 mA	250 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 275MA BL	28001107	Blau	0275 mA	275 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 300MA BL	28001108	Blau	0300 mA	300 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 325MA BL	28001109	Blau	0325 mA	325 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 350MA BL	28001110	Blau	0350 mA	350 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 375MA BL	28001111	Blau	0375 mA	375 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 400MA BL	28001112	Blau	0400 mA	400 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 425MA BL	28001251	Blau	0425 mA	425 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 450MA BL	28001113	Blau	0450 mA	450 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 475MA BL	28001252	Blau	0475 mA	475 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 500MA BL	28001114	Blau	0500 mA	500 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 550MA BL	28001115	Blau	0550 mA	550 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 600MA BL	28001116	Blau	0600 mA	600 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 650MA BL	28001117	Blau	0650 mA	650 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG 700MA BL	28001118	Blau	0700 mA	700 mA	10 Stk.	0,001 kg	
I-SELECT 2 PLUG MAX BL	28001099	Blau	MAX	MAX	10 Stk.	0,001 kg	

1. Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 62384

EN 61547

EN 62386-101 (Gemäß DALI Standard V2)

EN 62386-102

EN 62386-207

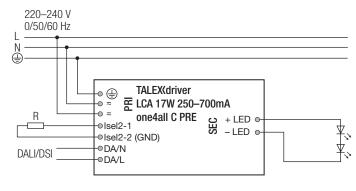
Gemäß EN 50172 für Zentralbatterieanlagen geeignet

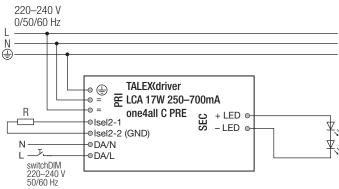
Gemäß EN 60598-2-22 für Notlichtinstallation geeignet

2. Thermische Angaben und Lebensdauer

2.1 Erwartete Lebensdauer

Erwartete Lebensdauer


Тур	Ausgangsstrom	ta	40 °C	50 °C	55 °C	60 °C
LCA 17W 250-700mA one4all C PRE	250 – 350 mA	tc	70 °C	75 °C	80 ℃	85 °C
	250 - 350 MA	Lebensdauer	> 100.000 h	> 100.000 h	> 100.000 h	80.000 h
	> 350 – 450 mA	tc	65 °C	70 °C	75 °C	80 °C
ECA II W 250-7 COMA CHEFAM CT RE		Lebensdauer	> 100.000 h	> 100.000 h	> 100.000 h	100.000 h
	> 450 – 700 mA	tc	60 ℃	65 °C	70 °C	75 °C
		Lebensdauer	> 100.000 h	> 100.000 h	> 100.000 h	95.000 h

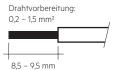

Der LED-Driver ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.

Die Abhängigkeit des Punktes to von der Temperatur ta hängt auch vom Design der Leuchte ab. Liegt die gemessene Temperatur to etwa 5 K unter to max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden. Detaillierte Informationen auf Anfrage.

3. Installation / Verdrahtung

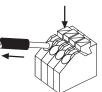
3.1 Anschlussdiagramm

Verdrahtung für Dimmbetrieb mit ready2mains siehe ready2mains Gateway-Datenblatt.


3.2 Leitungsart und Leitungsquerschnitt

Zur Verdrahtung können Litzendraht mit Aderendhülsen oder Volldraht mit Leitungsquerschnitt von 0,2 bis 1,5 mm² verwendet werden.

Für perfekte Funktion der Steckklemme Leitungen 8,5–9,5 mm abisolieren. Nur einen Draht pro Anschlussklemme verwenden.


Nur ein Kabel pro Zugentlastungskanal verwenden.

LED-Modul/LED-Driver/Spannungsversorgung

3.3 Lösen der Klemmverdrahtung

Dazu den "Drücker" an der Klemme betätigen und den Draht nach vorne abziehen.

3.4 Verdrahtungsrichtlinien

- Die sekundären Leitungen sollten für ein gutes EMV-Verhalten getrennt von den Netzanschlüssen und -leitungen geführt werden.
- Für ein gutes EMV-Verhalten sollte die LED-Verdrahtung so kurz wie möglich gehalten werden. Die max. sekundäre Leitungslänge beträgt 2 m (4 m Schleife), das gilt sowohl für LED-Ausgang, als auch für den I-select 2 Widerstand.
- Sekundäres Schalten ist nicht zulässig.
- Der LED-Driver besitzt keinen sekundärseitigen Verpolschutz. LED-Module, welche keinen Verpolschutz aufweisen, können bei Verpolung zerstört werden.
- Falsche Verdrahtung des LED-Drivers kann zu irreparablen Schäden führen und eine richtige Funktion ist nicht mehr gegeben.

Kompakt Dimming

3.5 Anschließen des LED-Moduls im Betrieb

Anschließen des LED-Moduls während des Betriebs ist nicht zulässig, da eine Ausgangsspannung > 0 V anliegen kann.

Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird. Dies kann durch Aus- und Einschalten des LED-Betriebsberätes sowie per DALI, DSI, switchDIM oder ready2mains erfolgen.

3.6 Erdanschluss

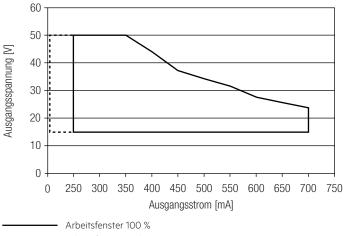
Der Erdanschluss ist als Schutzerde ausgeführt. Der LED-Driver kann mittels Erdklemme geerdet werden. Wird der LED-Driver geerdet, muss dies mit Schutzerde (PE) erfolgen. Für die Funktion des LED-Drivers ist keine Erdung notwendig. Zur Verbesserung von folgenden Verhalten wird ein Erdanschluss empfohlen:

- Funkstörung
- · LED Restglimmen im Standby
- Übertragung von Netztransienten an den LED Ausgang

Generell ist es empfehlenswert bei Modulen, die auf geerdeten Leuchtenteilen bzw. Kühlkörpern montiert sind und dadurch eine hohe Kapazität gegenüber Erde darstellen, auch den LED-Driver zu erden.

3.7 I-Select 2 Widerstände verbinden mittels Kabel

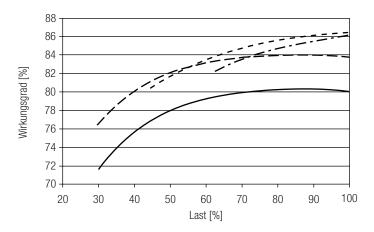
Für Details siehe:

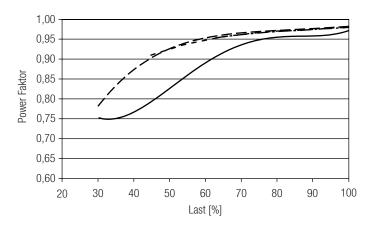

http://www.tridonic.com/com/de/download/technical/LCA_PRE_LC_EXC_Produkthandbuch_de.pdf.

3.8 Installationshinweis

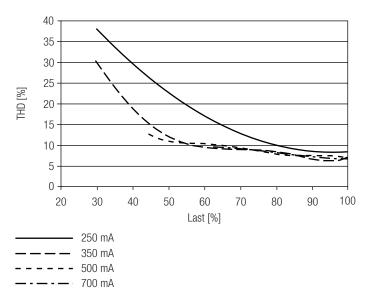
Max. Drehmoment für die Befestigungsschrauben: 0,5 Nm / M4

4. Elektr. Eigenschaften


4.1 Arbeitsfenster


----- Arbeitsfenster gedimmt

Es ist sicherzustellen, dass der LED-Driver ausschließlich innerhalb des gezeigten Arbeitsfensters betrieben wird. Besondere Aufmerksamkeit ist dem gedimmten Betrieb sowie dem DC- und Notlichtbetrieb zu widmen, da aufgrund der verwendeten Amplituden-Dimmung die Modulspannung mit dem Dimm-Level variiert. Eine Unterschreitung der spezifizierten minimalen Ausgangsspannung des LED-Drivers kann zur Abschaltung führen. Siehe Abschnitt "6.11 Lichtlevel im DC-Betrieb" für mehr Informationen.


4.2 Verhältnis Effizienz zu Last

4.3 Verhältnis Power Faktor zu Last

4.4 Verhältnis THD zu Last

100 % Last entsprechen der max. Ausgangsleistung (Volllast) gemäß der Tabelle auf Seite 2.

4.5 Maximale Belastung von Leitungsschutzautomaten

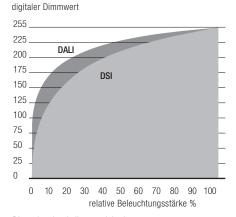
Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	2,5 mm ²	4 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	4 mm ²	l _{max}	Pulsdauer
LCA 17W 250-700mA one4all C PRE	35	46	58	73	21	28	35	44	20 A	133 µs

Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

4.6 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

	THD	3.	5.	7.	9.	11.
LCA 17W 250-700mA one4all C PRE	< 8	< 7	< 3	< 3	< 4	< 2


4.6 Dimmbetrieb

Dimmbereich 1% bis 100 % Digitale Ansteuerung mittels:

- DSI-Signal: 8 Bit Manchester Code Maximale Dimmgeschwindigkeit 1% bis 100 % in 1,4 s
- DALI-Signal: 16 Bit Manchester Code Maximale Dimmgeschwindigkeit
 1% bis 100% in 0,2 s
 Die Programmierung des minimalen und maximalen Dimmlevels ist möglich
 Werkseinstellung Minimum = 1%
 Einstellbereich 1% ≤ MIN ≤ 100%
 Werkseinstellung Maximum = 100%
 Einstellbereich 100% ≥ MAX ≥ 1%

Der Augenempfindlichkeit angepasster Dimmverlauf. Das Dimmen wird mittels Amplituden-Dimming realisiert.

4.7 Dimmcharakteristik

Dimmcharakteristik entspricht der Sehempfindlichkeit des menschlichen Auges.

5. Schnittstellen / Kommunikation

5.1 Steuereingang (DA/N, DA/L)

An den Klemmen DA/N und DA/L kann wahlweise das digitale Steuersignal DALI oder ein Standardtaster (switchDIM) zur Ansteuerung angeschlossen werden.

Der Steuereingang ist verpolungssicher für digitale Steuersignale (DALI, DSI). Das Steuersignal ist keine SELV-Spannung. Die Installation der Steuerleitung ist entsprechend den Richtlinien für Niederspannung auszuführen. Die möglichen Funktionen sind vom jeweiligen Steuermodul abhängig.

5.2 Steuereingang ready2mains (L, N)

Das digitale Steuersignal ready2mains wird direkt auf die Netzspannung moduliert und an die Netzklemmen verdrahtet (L und N).

5.3 switchDIM

Die integrierte switchDIM-Funktion ermöglicht den direkten Anschluss eines Standard-Tasters zum Dimmen und Schalten.

Ein kurzer Tastendruck (< 0,6 s) schaltet die angeschlossenen LED-Module ein bzw. aus. Der zuletzt eingestellte Dimmwert wird nach dem Einschalten wieder aufgerufen.

Ein anhaltender Tastendruck dimmt die LED-Module solange der Taster gedrückt ist. Nach Loslassen und erneuter Betätigung ändert sich die Dimmrichtung.

Für den Fall, dass LED-Module auf unterschiedlichen Dimmwerten starten oder mit gegenläufiger Dimmrichtung arbeiten (z.B. nachträgliche Installation), können alle Geräte durch einen 10 s anhaltenden Tastendruck auf 50 % Dimmwert synchronisiert werden.

Taster mit Glimmlampen dürfen nicht verwendet werden.

6. Funktionen

6.1 Funktion: Einstellbarer Strom

Der Ausgangsstrom des LED-Drivers kann in einem vorgegebenen Bereich eingestellt werden. Zur Einstellung stehen drei Optionen zur Verfügung.

Option 1: DALI

Die Konfiguration erfolgt mittels masterCONFIGURATOR (siehe masterCONFIGURATOR Dokumentation).

Option 2: I-select 2

Die Stromeinstellung erfolgt über einen passenden I-select 2 Widerstand, welcher in die I-select 2 Klemmen eingesteckt wird.

Die mathematische Beziehung zwischen Ausgangsstrom und Widerstandswert wird in der Produktbeschreibung "Zubehör I-SELECT 2 PLUG" erläutert.

Bitte beachten Sie, dass die Widerstandswerte für I-select 2 nicht mit I-select 1 kompatibel sind. Aus der Installation eines falschen Widerstands können möglicherweise irreparable Schäden an den LED-Modulen entstehen.

Widerstände für die wichtigsten Ausgangsstromwerte können von Tridonic bezogen werden (siehe Zubehör).

Option 3: ready2mains

Die Konfiguration erfolgt mittels optionalem Programmer und der entsprechenden Konfigurationssoftware über die ready2mains Schnittstelle.

DALI wird bei der Stromeinstellung vorrangig behandelt, gefolgt von I-Select 2 und ready2mains.

6.2 ready2mains - Konfiguration

Die Hauptparameter von LED-Drivern, wie LED-Ausgangsstrom, CLO und DC-Level, können mithilfe der ready2mains Schnittstelle über die Netzverdrahtung konfiguriert werden.

Dabei können die Parameter entweder über ready2mains-fähige Konfigurationssoftware oder direkt über den ready2mains Programmer eingestellt werden (nur Ausgangsstrom).

6.3 ready2mains - Dimming

ready2mains ermöglicht das Dimmen von Gruppen über die Netzverdrahtung, welches über das ready2mains Protokoll und entsprechende Dimming-Schnittstellen (Gateways) gesteuert wird.

Weitere Details zur Bedienung von ready2mains und dessen Komponenten finden Sie in den entsprechenden technischen Informationen.

6.4 Verhalten bei Kurzschluss

Bei Kurzschluss am LED-Ausgang wird dieser abgeschaltet. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über das Interface (DALI, DSI, switchDIM, ready2mains) erfolgen.

6.5 Verhalten bei Leerlauf

Der LED-Driver nimmt im Leerlauf keinen Schaden. Der LED-Ausgang wird deaktiviert und ist somit spannungsfrei. Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird.

6.6 Überlastschutz

Der LED-Driver schaltet bei Überschreitung des Ausgangsspannungsbereiches den LED-Ausgang ab. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über das Interface (DALI, DSI, switchDIM, ready2mains) erfolgen.

6.7 Übertemperaturschutz

Um den LED-Driver vor kurzzeitiger thermischer Überlastung zu schützen, wird bei Überschreitung der Grenztemperatur der Ausgangsstrom der LED reduziert. Der Temperaturschutz wird ca. 5 °C über tc max aktiv (siehe Seite 2). Im DC-Betrieb ist diese Funktion deaktiviert, um die Notlichtanforderung zu erfüllen.

6.8 corridorFUNCTION

Die corridorFUNCTION kann auf zwei verschiedene Arten programmiert werden. Um die corridorFUNCTION mittels Software zu programmieren, ist ein DALI-USB-Interface in Kombination mit einer DALI PS notwendig.
Als Software kann der masterCONFIGURATOR verwendet werden.
Um die corridorFUNCTION auch ohne Software zu aktivieren, muss lediglich eine Spannung von 230 V für 5 min. am switchDIM-Anschluss anliegen.
Danach geht das Gerät automatisch in die corridorFUNCTION.

Hinweis:

Sollte die corridorFUNCTION in einer switchDIM-Anlage fälschlicherweise aktiviert werden (z.B. ein Schalter wurde anstelle eines Tasters verwendet), so besteht die Möglichkeit nach korrekter Installation eines Tasters den corridorFUNCTION-Modus mittels 5 kurzer Tastendrücke innerhalb von 3 Sekunden wieder zu deaktivieren.

switchDIM und corridorFUNCTION sind sehr einfache Arten ein Gerät mittels handelsüblichen Tastern oder Bewegungsmeldern zu steuern. Für eine einwandfreie Funktion ist das Gerät jedoch auf eine sinusförmige Netzspannung mit einer Frequenz von 50 Hz oder 60 Hz am Steuereingang angewiesen. Besonderes Augenmerk ist auf klare, eindeutige Nulldurchgänge zu legen. Starke Netzstörungen können dazu führen, dass auch die Funktionen von switchDIM und corridorFUNCTION gestört werden.

6.9 Konstantlicht

CLO - Constant Light Output Funktion

Der Lichtstrom einer LED nimmt über ihre Lebensdauer kontinuierlich ab. Die Funktion CLO stellt sicher, dass die abgegebene Lichtmenge trotzdem stabil gleich bleibt. Dazu wird der LED-Strom im Laufe der LED-Lebensdauer kontinuierlich erhöht. Über den masterCONFIGURATOR können Startwert (in Prozent) und zu erwartende Lebensdauer definiert werden. Der LED-Driver passt den LED-Strom anschließend automatisch an.

6.10 Power-up/-down Fading

Die Power-up/-down Fading Funktion bietet die Möglichkeit das Ein- und Ausschalt-Verhalten anzupassen. So lässt sich das Fading während des Einbzw. Ausschaltens über einen Zeitraum von 0,2 bis 16 Sekunden variabel einstellen. Dabei dimmt das Gerät in der eingestellten Zeit von 0 % auf den Power-On Level oder vom aktuell eingestellten Dimm-Level auf 0 %. Dies gilt sowohl für den Betrieb mittels switchDIM und ready2mains, wie auch bei Ein- und Ausschalten der Versorgungsspannung. Ab Werk in kein Fading (= 0 Sekunden) eingestellt.

6.11 Lichtlevel im DC-Betrieb

Der LED-Driver ist für den Betrieb an DC-Spannung und gepulster DC-Spannung ausgelegt. Für einen zuverlässigen Betrieb ist sicherzustellen, dass der LED-Driver auch im DC- und Notlichtbetrieb innerhalb des in Kapitel "4.1 Arbeitsfenster" spezifizierten Bereiches betrieben wird.

Lichtlevel im DC-Betrieb: programmierbar 1 – 100 % (EOFx = 0,13) Programmierung mit DALI oder ready2mains. Im DC-Betrieb kann auch der Dimmbetrieb aktiviert werden.

Der spannungsabhängige Eingangsstrom des Betriebsgerätes inkl. LED-Modul hängt von der angeschlossenen Last ab.

Der spannungsabhängige Leerlaufstrom des Betriebsgerätes (ohne oder mit defektem LED-Modul) ist für:

AC: < 11,4 mA DC: < 3,1 mA

6.12 Software / Programmierung

Mittels Software und USB-Interface können verschiedene Funktionen aktiviert bzw. Parameter konfiguriert werden. Hierzu ist lediglich ein DALI-USB oder ready2mains Programmer, sowie die Software (masterCONFIGURATOR) notwendig.

6.13 masterCONFIGURATOR

Ab Version 2.8:

Zum Programmieren von Funktionen (CLO, I-select 2, Power-up Fading, corridorFUNCTION) und der Gerätekonfiguration (Fadetime, ePowerOnLevel, DC-Level etc.).

Weitere Informationen finden Sie im masterCONFIGURATOR Handbuch.

7. Sonstiges

7.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V $_{DC}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Nullleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{\text{AC}}$ (oder 1,414 x 1500 V $_{\text{DC}}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

7.2 Bedingungen für Lagerung und Betrieb

Umweltbedingungen: 5 % bis max. 85 %,

nicht kondensierend (max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder inner-halb des spezifizierten Temperaturbereiches (ta) befinden.

7.3 Zusätzliche Informationen

Weitere technische Informationen auf www.tridonic.com → Technische Daten

Garantiebedingungen auf $\underline{www.tridonic.com} \rightarrow Services$

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar.

Keine Garantie wenn das Gerät geöffnet wurde!