TRIDONIC

Driver LC 21W 500mA fixC SRL ADV2

Baureihe advanced

Produktbeschreibung

- _ Unabhängiger LED-Treiber mit Zugentlastungsgehäuse
- _ Extra flache Ausführung für eingeschränkte Einbaubedingungen (kleine Deckenausschnitte und niedrige Deckenhohlräume)
- _ Für Leuchten der Schutzklasse II
- _ Für Leuchten mit M und MM gemäß EN 60598, VDE 0710 und VDE 0711
- _ Temperaturschutz gemäß EN 61347-2-13 C5e
- _ Ausgangsstrom 500 mA
- _ Max. Ausgangsleistung 21 W
- _ Nominale Lebensdauer bis zu 50.000 h
- _ 5 Jahre Garantie (Bedingungen siehe

https://www.tridonic.com/herstellergarantiebedingungen)

Gehäuse-Eigenschaften

- _ Gehäuse: Polycarbonat, weifs
- _ Schutzart IP20
- _ Steckklemmen
- _ Zugentlastung mit der Möglichkeit der Durchgangsverdrahtung
- _ 2 separate Zugentlastungen für Eingangs- und Ausgangskabel mit sehr robusten Klemmen
- _ Neues Zugentlastungskonzept schnellere Montage und vorkonfektioniertes Anklemmen der LED-Last möglich

Funktionen

- _ Überlastschutz
- _ Kurzschlussschutz
- _ Leerlaufschutz
- _ Kein Überschwingen des Ausgangsstromes bei ein- oder ausgeschaltetem Netz

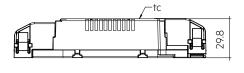
Typische Anwendung

- _ Für Downlight bei Handels- und Gastronomie-Anwendungen
- _ Für Panel- und Flächenbeleuchtung bei Büro- und Bildungs-Anwendungen

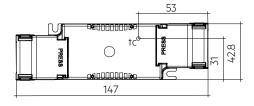
Website

http://www.tridonic.com/87500955

Linear



Dekorativ Halle


TRIDONIC

Driver LC 21W 500mA fixC SRL ADV2

Baureihe advanced

Bestelldaten

Тур	Artikelnummer		Verpackung Kleinmengen	Verpackung Großmengen	Gewicht pro Stk.	
LC 21/500/42 fixC SRL ADV2	87500955	10 Stk.	80 Stk.	1.200 Stk.	0,083 kg	

Technische Daten	Te	chnis	che [aten
------------------	----	-------	-------	------

Technische Daten	
Netzspannungsbereich	220 – 240 V
Wechselspannungsbereich	198 – 264 V
Netzfrequenz	50 / 60 Hz
Überspannungsschutz	320 V AC, 1 h
THD (bei 230 V, 50 Hz, Volllast)	< 15 %
Ausgangsstromtoleranz ^①	± 7,5 %
Typische Ausgangsstrom NF Restwelligkeit bei Volllast @	± 5 %
Ausgang P_ST_LM (bei Volllast)	≤1
Ausgang SVM (bei Volllast)	≤ 0,4
Startzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,5 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,5 s
Haltezeit bei Netzunterbrechung (Ausgang)	0 s
Umgebungstemperatur ta	-20 +50 °C
Umgebungstemperatur ta (bei Lebensdauer 50.000 h)	50 °C
Lagertemperatur ts	-40 +80 °C
Netz-Burst-Festigkeit	1 kV
Stoßspannungsfestigkeit (zwischen L - N)	1 kV
Stoßspannungsfestigkeit (zwischen L/N - PE)	2 kV
Stofsspannung ausgangsseitig (gegen PE)	2 kV
Schutzart	IP20
Lebensdauer	bis zu 50.000 h
Garantie (Bedingungen siehe www.tridonic.com)	5 Jahr(e)
Abmessungen L x B x H	147 x 43 x 30 mm

EN 55015, EN 61000-3-2, EN 61000-3-3, EN 61347-1, EN 61347-2-13, EN 61547, EN 62384

Spezifische technische Daten

q v	Ausgangsstrom [©]	Eingangsstrom (bei 230 V, 50 Hz, Volllast)	Max. Eingangsleistung	Typ. Leistungsaufnahme (bei 230 V, 50 Hz, Volllast)	Ausgangsleistungsbereic h	λ bei Volllast [®]	Wirkungsgrad bei Volllast ®	λ über gesamten Betriebsbereich (Minimum)	Wirkungsgrad bei min. Last	Min. Vorwärtsspannung	Max. Vorwärtsspannung	Max. Ausgangsspannung (U-OUT)	Max. Ausgangsspitzenstrom bei Volllast	Max. Ausgangsspitzenstrom bei Minimallast	Max. Gehäusetemperatur tc
LC 21/500/42 fixC SRL ADV2	500 mA	110 mA	25 W	24 W	15 – 21 W	0,95	88 %	0,9C	86 %	30 V	42 V	60 V	563 mA	563 mA	65 °C

<sup>On Ausgangsstrom ist Mittelwert.
On Der typische Wert bei Volllast ist abhängig vom V-l-Charakter der Last.
On Testwert bei 230 V, 50 Hz.
On Der Verlauf zwischen min. und Volllast ist linear und hängt vom V-l-Charakter der Last ab.</sup>

1. Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 61547

EN 62384

1.1 Glühdrahttest

nach EN 61347-1 mit erhöhter Temperatur von 850 °C bestanden.

2. Thermische Angaben und Lebensdauer

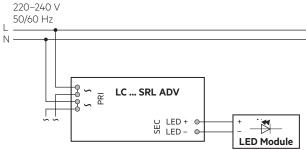
2.1 Erwartete Lebensdauer

Erwartete Lebensdauer

Тур	ta	40 °C	50 °C
LC 21/500/42 fixC SRL ADV2	tc	55 ℃	65°C [®]
EC 21/300/42 HAC SKE ADV2	Lebensdauer	100.000 h	50.000 h

[®] Testerwert bei max. Ausgangsspannung.

Die LED-Treiber sind für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallswahrscheinlichkeit von kleiner $10\,\%$.

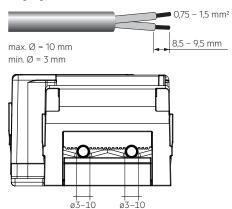

Die Abhängigkeit des Punktes tc von der Temperatur ta hängt auch vom Design der Leuchte ab.

Liegt die gemessene Temperatur to etwa 5 K unter to max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden.

Detaillierte Informationen auf Anfrage.

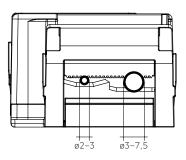
3. Installation / Verdrahtung

3.1 Anschlussdiagramm

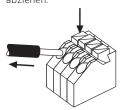

Gerät mit Durchgangsverdrahtungsfunktion.

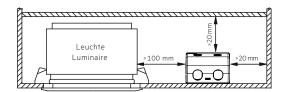
3.2 Leitungsart und Leitungsquerschnitt

Zur Verdrahtung Litzendraht mit Aderendhülsen oder Volldraht von 0,75 bis 1,5 mm² (Netzleitung) und 0,2 bis 1,5 mm² (Sekundärleitung, LED-Modul) verwenden.


Für perfekte Funktion der Steckklemme Leitungen 8,5–9,5 mm abisolieren. Nur einen Draht pro Anschlußklemme verwenden.

Eingangsklemmen (D2):


Ausgangsklemmen (D1):


3.3 Lösen der Klemmenverdrahtung

Dazu den "Drücker" an der Klemme betätigen und den Draht nach vorne abziehen.

3.4 Einbaubedingungen bei Verwendung als unabhängiger Treiber mit Clip-On

Trocken; Säurefrei; Ölfrei; Fettfrei. Die am Gerät angegebene maximale Umgebungstemperatur (ta) darf nicht überschritten werden. Die unten angegebenen Mindestabstände sind Empfehlungen und von der eingesetzten Leuchte abhängig. Für die Montage direkt in der Ecke nicht geeignet.

3.5 Verdrahtungsrichtlinien

- Alle Verbindungen möglichst kurz halten, um gutes EMV-Verhalten zu erreichen.
- Netzleitungen getrennt vom LED-Betriebsgerät und anderen Leitungen führen (ideal 5 10 cm Abstand)
- Max. Länge der Ausgangsleitungen beträgt 2 m.
- Zur Einhaltung der EMV Vorschriften sekundäre Leitungen (LED Modul) parallel führen.
- Sekundäres Schalten ist nicht zulässig.
- Falsche Verdrahtung kann LED-Module zerstören.
- Die Durchgangsverdrahtung ist ausschließlich für den Anschluss weiterer LED-Treiber.
 - Max. Dauerstrom von 8 A darf nicht überschritten werden.
- Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.

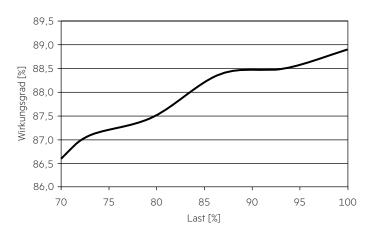
3.6 Austausch LED-Modul

- 1. Netz aus
- 2. LED-Modul entfernen
- 3. 20 Sekunden warten
- 4. LED-Modul wieder anschließen

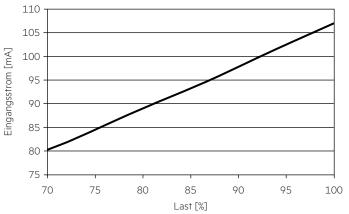
Hot-Plug-In oder sekundäres Schalten der LEDs ist nicht erlaubt und kann zu sehr hohem Strom in den LEDs führen.

3.7 Installationshinweis

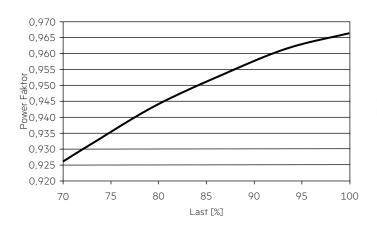
Das LED-Modul und alle Kontaktstellen innerhalb der Verdrahtung ausreichend gegen 3 kV Überspannung isolieren. Luft- und Kriechstrecke einhalten.


3.8 Gerätebefestigung

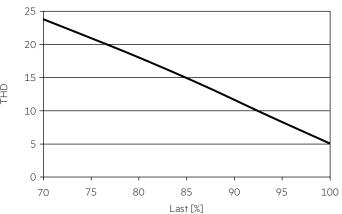
Max. Drehmoment für die Befestigung: 0,5 Nm/M4


4. Elektr. Eigenschaften

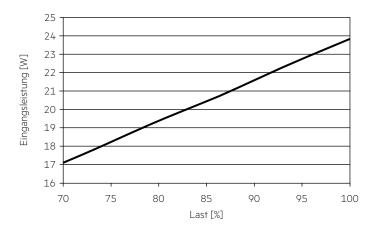
4.1 Diagramme


4.1.1 Wirkungsgrad in Abhängigkeit von der Last

4.1.4 Eingangsstrom in Abhängigkeit von der Last



4.1.2 Power Faktor in Abhängigkeit von der Last



4.1.5 THD in Abhängigkeit von der Last

THD ohne Oberwellen < 5 mA (0,6 %) des Eingangsstromes:

4.1.3 Eingangsleistung in Abhängigkeit von der Last

4.2 Maximale Belastung von Leitungsschutzautomaten bezogen auf den Einschaltstrom

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	2,5 mm ²	2,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	2,5 mm ²	Imax	Pulsdauer
LC 21/500/42 fixC SRL ADV2	56	72	89	111	33	43	53	67	20 A	120 µs

Dies sind max. Werte, die aus dem Einschaltstrom berechnet werden! Achten sie darauf, den max. Nenndauerstrom des Leitungsschutzautomaten nicht zu überschreiten. Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

4.3 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

	THD	3.	5.	7.	9.	11.
LC 21/500/42 fixC SRL ADV2	< 15	< 12	< 10	< 7	< 5	< 3

Gemäß 6100-3-2. Oberwellen < 5 mA oder < 0,6 % (welcher auch immer größer ist) des Eingangsstromes werden nicht für die Berechnung vom THD berücksichtigt.

5. Funktionen

5.1 Verhalten bei Kurzschluss

Bei Kurzschluß am LED Ausgang schaltet der LED-Treiber aus. Nach Behebung des Kurzschlußes erfolgt automatische Rückkehr in den nominalen Betrieb.

5.2 Verhalten bei Leerlauf

Der LED-Treiber arbeitet im Burstmodus um eine konstante Ausgangsspannung zu erreichen, damit die Anwendung im sicheren Bereich arbeitet, falls die LED Verdrahtung Aufgrund eines Fehlers offen ist.

5.3 Überlastschutz

Wird die maximale Last um einen definierten internen Grenzwert überschritten, schützt sich der LED-Treiber und der Ausgangsstrom nimmt ab, bis die LED flackert.

Nach Behebung der Überlast erfolgt automatische Rückkehr in den nominalen Betrieb.

6. Sonstiges

6.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V pc während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Neutralleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit $1500\,\mathrm{V}_{AC}$ (oder 1,414 x $1500\,\mathrm{V}_{DC}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

6.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5% bis max. 85%,

nicht kondensierend (max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

6.3 Maximale Anzahl an Schaltzyklen

Alle LED-Treiber werden mit 50.000 Schaltzyklen geprüft.

6.4 Zusätzliche Informationen

weitere technische Informationen auf <u>www.tridonic.com</u> \rightarrow Technische Daten

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar. Keine Garantie wenn das Gerät geöffnet wurde!