basicDIM Wireless LED-Treiber

Driver LC 35W 24V bDW SC PRE2

Baureihe premium Konstantspannung

Produktbeschreibung

- Dimmbarer 24 V Konstantspannungs-LED-Treiber für flexible Konstantspannungs-LED-Streifen
- basicDIM Wireless ermöglicht verschiedene Dimmmöglichkeiten
- Baut automatisch ein drahtloses Kommunikationsnetzwerk auf mit bis zu 127 Nodes
- Dimmbereich von 1 100 %
- Kein externer Dimmer notwendig
- Geeignet für Sicherheitsbeleuchtungsanlagen gemäß EN 50172
- Nominale Lebensdauer bis zu 50.000 h
- 5 Jahre Garantie

Typische Anwendung

Voutenbeleuchtung, Fassaden-Akzentbeleuchtung, indirekte
 Deckenbeleuchtung

Technische Details

- 24 V, 35 W
- Kleine Bauform (195 x 43 x 30,2 mm) mit Zugentlastung
- Kleiner Querschnitt
- Steckklemmen zur einfachen Verdrahtung
- 1 Ausgangskanal (+/-)

Schnittstellen

- basicDIM Wireless
- ready2mains (Konfigurieren über Netz)
- Klemmen: 45° Steckklemmen

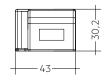
Systemlösung

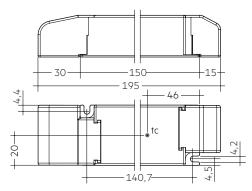
- Tridonic LLE-FLEX ADV 600, 1.200, 1.800 lm/m
- Tridonic LLE-FLEX EXC 600, 1.200, 1.800, 2.500 lm/m
- In Verbindung mit Flex-Zubehör Wire to PCB Stecker

Normen, Seite 3

Systemlösung

TRIDONIC


IP20 SELV 19 TO FAIL C E ROHS


Driver LC 35W 24V bDW SC PRE2

Baureihe premium Konstantspannung

Technische Daten

Technische Dafen	
Netzspannungsbereich	220 – 240 V
Wechselspannungsbereich	198 – 264 V
Gleichspannungsbereich	176 – 280 V
Netzfrequenz	0 / 50 / 60 Hz
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast) [®]	176 mA
Typ. Strom (220 V, 0 Hz, Volllast, 15 % Dimmlevel)	37 mA
Ableitstrom (bei 230 V, 50 Hz, Volllast) [®]	< 320 µA
Max. Eingangsleistung	40 W
Typ. Wirkungsgrad (bei 230 V / 50 Hz / Volllast)	89 %
λ (bei 230 V, 50 Hz, Volllast) [®]	0,98
Typ. Leistungsaufnahme im Stand-by	< 0,35 W
Typ. Eingangsstrom im Leerlauf	26,5 mA
Typ. Eingangsleistung im Leerlauf	1,78 W
Einschaltstrom (Spitze / Dauer)	21,6 A / 136 µs
THD (bei 230 V, 50 Hz, Volllast)®	< 6,7 %
Startzeit (bei 230 V, 50 Hz, Volllast) [®]	< 0,6 s
Startzeit (DC-Betrieb)	< 0,3 s
Umschaltzeit (AC/DC)®	< 0,3 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	< 3 ms
Ausgangsspannungstoleranz	± 1 V
Ausgangsspannung NF Restwelligkeit (< 120 Hz)	± 5 %
Max. Ausgangsspannung (Leerlaufspannung)	60 V
PWM-Frequenz	~ 1 kHz
Dimmbereich	1 – 100 %
Stoßspannungsfestigkeit (zwischen L – N)	1 kV
Stoßspannungsfestigkeit (zwischen L/N – PE)	2 kV
Abmessungen LxBxH	195 x 43 x 30,2 mm

Bestelldaten

Тур	Artikelnumm	er Verpackung Karton®	Verpackung Palette	Gewicht pro Stk.
Mehrfachverpackung				
LC 35/24V bDW SC PRE2	28002415	10 Stk.	390 Stk.	0,15 kg
Einzelverpackung				
LC 35/24V bDW SC PRE2 SP	28002677	10 Stk.	480 Stk.	0,15 kg

In beiden Verpackungen ist die Zugentlastung enthalten.
In der Einzelverpackung ist jeder Treiber noch einmal einzeln verpackt.

Spezifische technische Daten

Тур	Last	Vorwärts-	Ausgangsstrom	Max. Ausgangsleistung	Typ. Leistungsaufnahme	Typ. Stromaufnahme	Max. Gehäuse-	Umgebungs-
		spannung		(bei 24 V, Volllast)	(bei 24 V, Volllast)	(bei 24 V, Volllast)	temperatur tc	temperatur ta
	10 %	24 V	146 mA	3,5 W	5,9 W	41 mA	75 °C	-25 +60 °C
	20 %	24 V	292 mA	7,0 W	9,6 W	57 mA	75 °C	-25 +60 °C
	30 %	24 V	437 mA	10,5 W	13,4 W	71 mA	75 ℃	-25 +60 °C
	40 %	24 V	583 mA	14,0 W	17,0 W	85 mA	75 ℃	-25 +60 °C
LC 35/24V bDW SC PRE2	50 %	24 V	729 mA	17,5 W	20,7 W	99 mA	80 °C	-25 +60 °C
LC 35/24V BDW SC PRE2	60 %	24 V	875 mA	21,0 W	24,5 W	114 mA	80 °C	-25 +60 °C
	70 %	24 V	1.021 mA	24,5 W	28,3 W	130 mA	80 °C	-25 +60 °C
	80 %	24 V	1.167 mA	28,0 W	32,0 W	145 mA	75 °C	-25 +50 °C
	90 %	24 V	1.313 mA	31,5 W	35,7 W	161 mA	75 ℃	-25 +50 °C
	100 %	24 V	1.453 mA	35,0 W	39,4 W	176 mA	75 ℃	-25 +50 °C

^① Gültig bei 100 % Dimmlevel.

 $^{^{@}}$ Gültig bei sofortiger Änderung der Stromversorgungsart, ansonsten gilt die Startzeit.

1. Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 62384

EN 61547

EN 300330 V2.11

EN 301489-1 V2.1.1

EN 301489-3 V2.1.1

EN 300328 V2.1.1

EN 301489-17 V2.1.1

Gemäß EN 50172 für Zentralbatterieanlagen geeignet

Gemäß EN 60598-2-22 für Notlichtinstallation geeignet

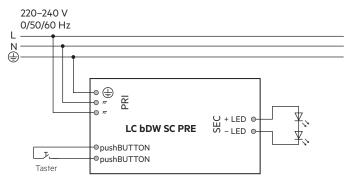
1.1 Glühdrahttest

nach EN 61347-1 mit erhöhter Temperatur von 850 °C bestanden.

2. Thermische Angaben und Lebensdauer

2.1 Erwartete Lebensdauer

Erwartete Lebensdauer


Тур	Ausgangsleistung	ta	30 °C	40 °C	50 °C	60 °C
LC 35/24V bDW SC PRE2	7F 24 W	tc	60 °C	65 °C	75 °C	-
	35 – 26 W	Lebensdauer	> 100.000 h	> 100.000 h	55.000 h	-
	25 – 16 W	tc	-	60 ℃	70 °C	80 °C
LC 33/244 DDW 3C FRE2	25 - 10 W	Lebensdauer	-	> 100.000 h	95.000 h	55.000 h
	- 1F W	tc	-	60 °C	65 °C	75 °C
	≤ 15 W	Lebensdauer	-	> 100.000 h	> 100.000 h	65.000 h

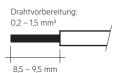
Das DC-Spannungsversorgungsgerät ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.

Die Abhängigkeit des Punktes tc von der Temperatur ta hängt auch vom Design der Leuchte ab. Liegt die gemessene Temperatur tc etwa 5 K unter tc max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden.
Detaillierte Informationen auf Anfrage.

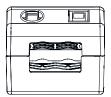
3. Installation / Verdrahtung

3.1 Anschlussdiagramm

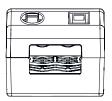
Der verwendete Taster muss über eine Isolation verfügen.

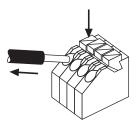

3.2 Leitungsart und Leitungsquerschnitt

Zur Verdrahtung können Litzendraht mit Aderendhülsen oder Volldraht mit Leitungsquerschnitt von 0,2 bis 1,5 mm² verwendet werden.


Für perfekte Funktion der Steckklemme Leitungen 8,5–9,5 mm abisolieren.

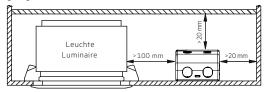
Nur einen Draht pro Anschlussklemme verwenden. Nur ein Kabel pro Zugentlastungskanal verwenden.


LED-Modul/LED-Treiber/Spannungsversorgung


Sekundäre Zugentlastung für Kabel mit großerem Kabelmantel

Sekundäre Zugentlastung für Kabel mit kleinerem Kabelmantel

3.3 Lösen der Klemmverdrahtung



Lösen der Klemmenverdrahtung

Dazu den "Push-Button" an der Klemme betätigen und den Draht nach vorne abziehen.

3.4 Einbaubedingungen bei Verwendung als unabhängiger Treiber mit Clip-On

Trocken; Säurefrei; Ölfrei; Fettfrei. Die am Gerät angegebene maximale Umgebungstemperatur (ta) darf nicht überschritten werden. Die unten angegebenen Mindestabstände sind Empfehlungen und von der eingesetzten Leuchte abhängig. Gerät ist für die Montage direkt in der Ecke nicht geeignet.

3.5 Verdrahtungsrichtlinien

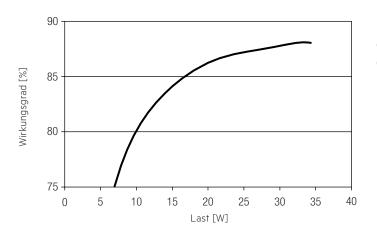
- Die sekundären Leitungen sollten für ein gutes EMV-Verhalten getrennt von den Netzanschlüssen und -leitungen geführt werden.
- Für ein gutes EMV-Verhalten sollte die LED-Verdrahtung so kurz wie möglich gehalten werden. Die max. sekundäre Leitungslänge beträgt 2 m (4 m Schleife).
- Die sekundären Leitungen (LED Modul) sollten für ein gutes EMV-Verhalten parallel geführt werden.
- · Sekundäres Schalten ist nicht zulässig.
- Der LED-Treiber besitzt keinen sekundärseitigen Verpolschutz. LED-Module, welche keinen Verpolschutz aufweisen, können bei Verpolung zerstört werden.
- Falsche Verdrahtung des LED-Treibers kann zu irreparablen Schäden führen und eine richtige Funktion ist nicht mehr gegeben.
- Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.

3.6 Anschließen des LED-Moduls im Betrieb

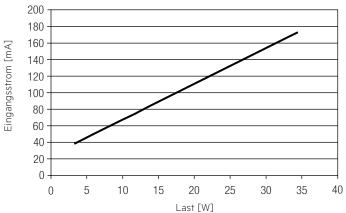
Anschließen des LED-Moduls während des Betriebs ist nicht zulässig, da eine Ausgangsspannung > 0 V anliegen kann.

Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird. Dies kann durch Netzreset oder über das Interface (basicDIM Wireless) erfolgen.

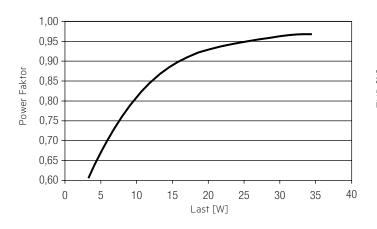
3.7 Erdanschluss

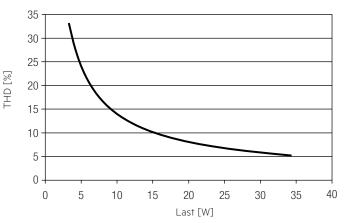

Der Erdanschluss ist als Schutzerde ausgeführt. Der LED-Treiber kann mittels Erdklemme geerdet werden. Wird der LED-Treiber geerdet, muss dies mit Schutzerde (PE) erfolgen. Für die Funktion des LED-Treibers ist keine Erdung notwendig. Zur Verbesserung von folgenden Verhalten wird ein Erdanschluss empfohlen:

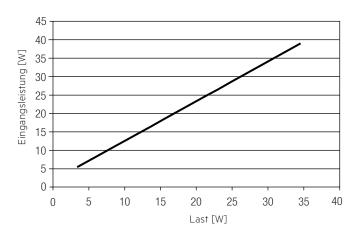
- Funkstörung
- LED Restglimmen im Standby
- Übertragung von Netztransienten an den LED Ausgang


Generell ist es empfehlenswert bei Modulen, die auf geerdeten Leuchtenteilen bzw. Kühlkörpern montiert sind und dadurch eine hohe Kapazität gegenüber Erde darstellen, auch den LED-Treiber zu erden.

4. Elektr. Eigenschaften


4.1 Verhältnis Effizienz zu Last


4.4 Verhältnis Eingangsstrom zu Last


4.2 Verhältnis PF-Wert zu Last

4.5 Verhältnis THD zu Last

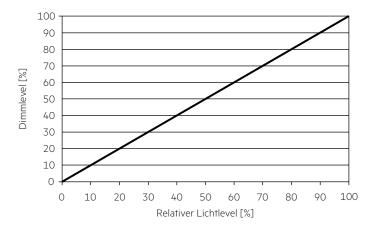
4.3 Verhältnis Eingangsleistung zu Last

4.6 Maximale Belastung von Leitungsschutzautomaten

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	2,5 mm ²	4 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	4 mm ²	l _{max}	Pulsdauer
LC 35/24V bDW SC PRE2	27	37	47	60	16	22	28	36	21,6 A	136 µs

Typische Werte für Leitungsschutzautomaten von ABB Serie S200 als Referenz.

4.7 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %


	THD	3.	5.	7.	9.	11.
LC 35/24V bDW SC PRE2	6	6	1	2	2	1

4.8 Dimmbetrieb

Dimmbereich 1% bis 100 % Digitale Ansteuerung mittels:

basicDIM Wireless

4.9 Dimmcharakteristik

5. Schnittstellen / Kommunikation

5.1 Steuereingang

An den Klemmen kann ein handelsüblicher Taster zur Ansteuerung angeschlossen werden.

Maximale Kabellänge des Tasters ist 1 Meter.

Um diese Funktion zu verwenden, muss sie vorher aktiviert werden.

Das Steuersignal ist keine SELV-Spannung. Die Installation der Steuerleitung ist entsprechend den Richtlinien für Niederspannung auszuführen. Die möglichen Funktionen sind vom jeweiligen Steuermodul abhängig. Profiländerung siehe Handbuch https://www.tridonic.com/com/en/download/technical/Documentation_Tridonic_4remote_BT_EN.pdf

5.2 Steuereingang ready2mains (L, N)

Das digitale Steuersignal ready2mains wird direkt auf die Netzspannung moduliert und an die Netzklemmen verdrahtet (L und N).

6. Funktionen

6.1 ready2mains - Konfiguration

Die Hauptparameter von LED-Treibern, wie LED-Ausgangsstrom, CLO und DC-Level, können mithilfe der ready2mains Schnittstelle über die Netzverdrahtung konfiguriert werden.

Dabei können die Parameter entweder über ready2mains-fähige Konfigurationssoftware oder direkt über den ready2mains Programmer eingestellt werden (nur Ausgangsstrom).

6.2 Verhalten bei Kurzschluss

Bei Kurzschluss am LED-Ausgang wird dieser abgeschaltet. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über die Applikation oder Taster erfolgen.

6.3 Überlastschutz

Der LED-Treiber schaltet bei Überschreitung des Ausgangsspannungsbereiches den LED-Ausgang ab. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über die Applikation oder Taster erfolgen.

6.4 Übertemperaturschutz

Um den LED-Treiber vor kurzzeitiger thermischer Überlastung zu schützen, wird bei Überschreitung der Grenztemperatur der Ausgangsstrom der LED reduziert. Der Temperaturschutz wird ca. 5 °C über tc max aktiv (siehe Seite 2). Im DC-Betrieb ist diese Funktion deaktiviert, um die Notlichtanforderung zu erfüllen.

6.5 Konstantlicht

CLO – Constant Light Output Funktion

Der Lichtstrom einer LED nimmt über ihre Lebensdauer kontinuierlich ab. Die Funktion CLO stellt sicher, dass die abgegebene Lichtmenge trotzdem stabil gleich bleibt. Dazu wird der LED-Strom im Laufe der LED-Lebensdauer kontinuierlich erhöht. Über ready2mains können Startwert (in Prozent) und zu erwartende Lebensdauer definiert werden.

Der LED-Treiber passt den LED-Strom anschließend automatisch an.

6.6 Power-up/-down Fading

Die Power-up/-down Fading Funktion bietet die Möglichkeit das Ein- und Ausschalt-Verhalten anzupassen. So lässt sich das Fading während des Einbzw. Ausschaltens über einen Zeitraum von 0,2 bis 16 Sekunden variabel einstellen. Dabei dimmt das Gerät in der eingestellten Zeit von 0 % auf den Power-On Level oder vom aktuell eingestellten Dimm-Level auf 0 %. Dies gilt sowohl für den Betrieb mittels 4remoteBT, wie auch bei Ein- und Ausschalten der Versorgungsspannung. Ab Werk in kein Fading (=0s) eingestellt.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

6.7 Lichtlevel im DC-Betrieb

Der LED-Treiber ist für den Betrieb an DC-Spannung und gepulster DC-Spannung ausgelegt.

Lichtlevel im DC-Betrieb: programmierbar 1 – 100 % (EOFu = 0,13) Programmierung mit ready2mains.

Im DC-Betrieb kann auch der Dimmbetrieb aktiviert werden.

Der spannungsabhängige Eingangsstrom des Betriebsgerätes inkl. LED-Modul hängt von der angeschlossenen Last ab.

6.8 Software / Programmierung

Mittels Software können verschiedene Funktionen aktiviert bzw. Parameter konfiguriert werden.

Hierzu ist der ready2mains Programmer oder die utilityAPP notwendig.

7. Sonstiges

7.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V DC während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Nullleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2 M\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V AC (oder 1,414 x 1500 V DC). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

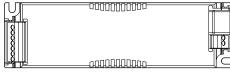
7.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5 % bis max. 85 %,

> nicht kondensierend (max. 56 Tage/Jahr bei 85%)

-40 °C bis max. +80 °C Lagertemperatur:

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.


7.3 Platzierung

basicDIM Wireless verfügt über eine integrierte Antenne für eine einfache Integration. Um die Reichweite in jede Richtung zu optimieren, sollten bei der Montage des Geräts einige Designrichtlinien beachtet werden. Die Antenne befindet sich an der Ecke des Gehäuses. Sie befindet sich auf der Oberseite der Leiterplatte.

Wird das Gerät an einer Metallplatte montiert (z.B. am Rahmen einer Leuchte), kann dadurch das Funksignal nachhaltig gestört werden. In diesem Fall ist unter Umständen ein Ausschnitt unterhalb der Antenne erforderlich, damit das Funksignal die Konstruktion verlassen kann. Der ausgeschnittene Bereich sollte so groß wie möglich sein. Auch sollte das Gerät so weit wie möglich entfernt von vertikalen Metallstrukturen platziert werden.

Die Reichweite des Funksignals hängt von der Umgebung ab, z.B. Leuchte, Gebäudekonstruktion, Möbel oder Menschen, und muss in der Installation geprüft und abgenommen werden.

7.4 Maximale Anzahl an Schaltzyklen

Alle LED-Treiber werden mit 50.000 Schaltzyklen geprüft. Die tatsächlich erreichbare Anzahl Schaltzyklen liegt signifikant höher.

7.5 Zusätzliche Informationen

Weitere technische Informationen auf <u>www.tridonic.com</u> → Technische Daten

 ${\sf Garantiebedingungen~auf~\underline{www.tridonic.com}} \to {\sf Services}$

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch

Keine Garantie wenn das Gerät geöffnet wurde!